微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 赞助作者:赞助作者

Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

Hive lxw1234@qq.com 84395℃ 5评论

GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

Hive版本为 apache-hive-0.13.1

数据准备:

2015-03,2015-03-10,cookie1
2015-03,2015-03-10,cookie5
2015-03,2015-03-12,cookie7
2015-04,2015-04-12,cookie3
2015-04,2015-04-13,cookie2
2015-04,2015-04-13,cookie4
2015-04,2015-04-16,cookie4
2015-03,2015-03-10,cookie2
2015-03,2015-03-10,cookie3
2015-04,2015-04-12,cookie5
2015-04,2015-04-13,cookie6
2015-04,2015-04-15,cookie3
2015-04,2015-04-15,cookie2
2015-04,2015-04-16,cookie1

CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/tmp/lxw11/';


hive> select * from lxw1234;
OK
2015-03 2015-03-10      cookie1
2015-03 2015-03-10      cookie5
2015-03 2015-03-12      cookie7
2015-04 2015-04-12      cookie3
2015-04 2015-04-13      cookie2
2015-04 2015-04-13      cookie4
2015-04 2015-04-16      cookie4
2015-03 2015-03-10      cookie2
2015-03 2015-03-10      cookie3
2015-04 2015-04-12      cookie5
2015-04 2015-04-13      cookie6
2015-04 2015-04-15      cookie3
2015-04 2015-04-15      cookie2
2015-04 2015-04-16      cookie1

GROUPING SETS

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
GROUPING SETS (month,day) 
ORDER BY GROUPING__ID;

month      day            uv      GROUPING__ID
------------------------------------------------
2015-03    NULL            5       1
2015-04    NULL            6       1
NULL       2015-03-10      4       2
NULL       2015-03-12      1       2
NULL       2015-04-12      2       2
NULL       2015-04-13      3       2
NULL       2015-04-15      2       2
NULL       2015-04-16      2       2


等价于 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day

再如:

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
GROUPING SETS (month,day,(month,day)) 
ORDER BY GROUPING__ID;

month         day             uv      GROUPING__ID
------------------------------------------------
2015-03       NULL            5       1
2015-04       NULL            6       1
NULL          2015-03-10      4       2
NULL          2015-03-12      1       2
NULL          2015-04-12      2       2
NULL          2015-04-13      3       2
NULL          2015-04-15      2       2
NULL          2015-04-16      2       2
2015-03       2015-03-10      4       3
2015-03       2015-03-12      1       3
2015-04       2015-04-12      2       3
2015-04       2015-04-13      3       3
2015-04       2015-04-15      2       3
2015-04       2015-04-16      2       3


等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

其中的 GROUPING__ID,表示结果属于哪一个分组集合。

 

 

CUBE

根据GROUP BY的维度的所有组合进行聚合。

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
WITH CUBE 
ORDER BY GROUPING__ID;


month  			    day             uv     GROUPING__ID
--------------------------------------------
NULL            NULL            7       0
2015-03         NULL            5       1
2015-04         NULL            6       1
NULL            2015-04-12      2       2
NULL            2015-04-13      3       2
NULL            2015-04-15      2       2
NULL            2015-04-16      2       2
NULL            2015-03-10      4       2
NULL            2015-03-12      1       2
2015-03         2015-03-10      4       3
2015-03         2015-03-12      1       3
2015-04         2015-04-16      2       3
2015-04         2015-04-12      2       3
2015-04         2015-04-13      3       3
2015-04         2015-04-15      2       3



等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
UNION ALL 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

 

ROLLUP

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

比如,以month维度进行层级聚合:
SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY month,day
WITH ROLLUP 
ORDER BY GROUPING__ID;

month  			    day             uv     GROUPING__ID
---------------------------------------------------
NULL             NULL            7       0
2015-03          NULL            5       1
2015-04          NULL            6       1
2015-03          2015-03-10      4       3
2015-03          2015-03-12      1       3
2015-04          2015-04-12      2       3
2015-04          2015-04-13      3       3
2015-04          2015-04-15      2       3
2015-04          2015-04-16      2       3

可以实现这样的上钻过程:
月天的UV->月的UV->总UV
--把month和day调换顺序,则以day维度进行层级聚合:

SELECT 
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY day,month 
WITH ROLLUP 
ORDER BY GROUPING__ID;


day  			      month              uv     GROUPING__ID
-------------------------------------------------------
NULL            NULL               7       0
2015-04-13      NULL               3       1
2015-03-12      NULL               1       1
2015-04-15      NULL               2       1
2015-03-10      NULL               4       1
2015-04-16      NULL               2       1
2015-04-12      NULL               2       1
2015-04-12      2015-04            2       3
2015-03-10      2015-03            4       3
2015-03-12      2015-03            1       3
2015-04-13      2015-04            3       3
2015-04-15      2015-04            2       3
2015-04-16      2015-04            2       3

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

这种函数,需要结合实际场景和数据去使用和研究,只看说明的话,很难理解。

官网的介绍: https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C+Grouping+and+Rollup

点此查看所有Hive窗口分析函数的文章

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

喜欢 (188)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(5)个小伙伴在吐槽
  1. ratio_to_report这个函数编译失败怎么回事,其他开窗函数没问题,我用的是hive-1.1.0-cdh5.14.2
    龙城山岳2018-05-24 15:38 回复
  2. 大兄弟 为什么看了你写的文章我反而更糊涂了啊。。。。
    tasselmi2018-07-30 19:53 回复
    • NULL 相当于等于ALL
      2142019-10-28 14:53 回复
  3. 下面这句话是不是说错了,官网中说是等价于UNION(带去重),因此每次GROUPING SETS之前我都会先把所有的null值处理掉…… 引用:“GROUPING SETS在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行"UNION ALL"”
    孙安知2018-09-29 15:22 回复
  4. 我觉得你可以解释一下查询结果中NULL的含义,指的是相当于该列不做限定查询的情况(,也就是所谓的聚合,不然很难理解
    2142019-10-28 14:50 回复