关键字:elasticsearch、olap
一直想找一个用于大数据平台实时OLAP(甚至是实时计算)的框架,之前调研的Druid(druid.io)太过复杂,整个Druid由5、6个服务组成,而且加载数据也不太方便,性能一般,亦或是我还不太会用它。后来发现使用ElasticSearch就可以满足海量数据实时OLAP的需求。
ElasticSearch相信大家都很熟悉了,它在搜索领域已经有了举足轻重的地位,而且也支持越来越多的聚合统计功能,还和YARN、Hadoop、Hive、Spark、Pig、Flume等大数据框架兼容的越来越好,比如:可以将ElasticSearch跑在YARN上,还可以在Hive中建立外部表映射到ElasticSearch的Index中,直接在Hive中执行INSERT语句,将数据加载进ElasticSearch。
所谓OLAP,其实就是从事实表中统计任意组合维度的指标,也就是过滤、分组、聚合,其中,聚合除了一般的SUM、COUNT、AVG、MAX、MIN等,还有一个重要的COUNT(DISTINCT),看上去这些操作在SQL中是非常简单的统计,但在海量数据、低延迟的要求下,并不是那么容易做的。
ElasticSearch本来就是做实时搜索的,过滤自然不是问题,现在也支持各种聚合以及Pipeline aggregations(相当于SQL子查询的功能),而且ElasticSearch的安装部署也非常简单,一个节点只有一个服务进程,关于安装配置可参考:http://lxw1234.com/archives/2015/12/582.htm
本文以两个业务场景的例子,看一下ElasticSearch是如何满足我们的需求的。
例子1:网站流量报告
在我们的报表平台有这样一张报表,用于查看每个网站每天的流量指标:
其中,维度有:天、小时、网站,指标有:PV、UV、访问次数、跳出率、平均停留时间、回访率等。另外,还有一张报表是地域报告,维度多了省份和城市,指标一样。目前的做法是将可选的维度组合及对应的指标先在Hive中分析好,再将结果同步至MySQL,供报表展现。
真正意义上的OLAP做法,我是这样做的:在Hive分析好一张最细粒度为visit_id(session_id)的事实表,字段及数据如下:
然后将这张事实表的数据加载到ElasticSearch中的logs2/sitelog1211中。查看数据:
curl -XGET 'http://localhost:9200/logs2/sitelog1211/_search?pretty' { "took" : 1015, "timed_out" : false, "_shards" : { "total" : 10, "successful" : 10, "failed" : 0 }, "hits" : { "total" : 3356328, "max_score" : 1.0, "hits" : [ { "_index" : "logs2", "_type" : "sitelog1211", "_id" : "AVGkoWowd8ibEMoyOhve", "_score" : 1.0, "_source":{"cookieid" : "8F97E07300BC7655F6945A","siteid" : "633","visit_id" : "feaa25e6-3208-4801-b7ed-6fa45f11ff42","pv" : 2,"is_return_cookie" : 0, "is_bounce_visit" : 0,"visit_stay_times" : 34,"visit_view_page_cnt" : 2, "region" : "浙江","city" : "绍兴"} }, ……
该天事实表中总记录数为3356328。
接着使用下面的查询,完成了上图中网站ID为1127,日期为2015-12-11的流量报告:
curl -XGET 'http://localhost:9200/logs2/sitelog1211/_search?search_type=count&q=siteid:1127&pretty' -d ' { "size": 0, "aggs" : { "pv" : {"sum" : { "field" : "pv" } }, "uv" : {"cardinality" : {"field" : "cookieid" ,"precision_threshold": 40000}}, "return_uv" : { "filter" : {"term" : {"is_return_cookie" : 1}}, "aggs" : { "total_return_uv" : {"cardinality" : {"field" : "cookieid" ,"precision_threshold": 40000}} } }, "visits" : {"cardinality" : {"field" : "visit_id" ,"precision_threshold": 40000}}, "total_stay_times" : {"sum" : { "field" : "visit_stay_times" }}, "bounce_visits" : { "filter" : {"term" : {"is_bounce_visit" : 1}}, "aggs" : { "total_bounce_visits" : {"cardinality" : {"field" : "visit_id" ,"precision_threshold": 40000}} } } } }'
基本上1~2秒就可以返回结果:
{ "took" : 1887, "timed_out" : false, "_shards" : { "total" : 10, "successful" : 10, "failed" : 0 }, "hits" : { "total" : 5888, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "uv" : { "value" : 5859 }, "visits" : { "value" : 5889 }, "return_uv" : { "doc_count" : 122, "total_return_uv" : { "value" : 119 } }, "bounce_visits" : { "doc_count" : 5177, "total_bounce_visits" : { "value" : 5177 } }, "pv" : { "value" : 10820.0 }, "total_stay_times" : { "value" : 262810.0 } } }
接着是地域报告中维度为省份的指标统计,查询语句为:
curl -XGET 'http://localhost:9200/logs2/sitelog1211/_search?search_type=count&q=siteid:1127&pretty' -d ' { "size": 0, "aggs" : { "area_count" : { "terms" : {"field" : "region","order" : { "pv" : "desc" }}, "aggs" : { "pv" : {"sum" : { "field" : "pv" } }, "uv" : {"cardinality" : {"field" : "cookieid" ,"precision_threshold": 40000}}, "return_uv" : { "filter" : {"term" : {"is_return_cookie" : 1}}, "aggs" : { "total_return_uv" : {"cardinality" : {"field" : "cookieid" ,"precision_threshold": 40000}} } }, "visits" : {"cardinality" : {"field" : "visit_id" ,"precision_threshold": 40000}}, "total_stay_times" : {"sum" : { "field" : "visit_stay_times" }}, "bounce_visits" : { "filter" : {"term" : {"is_bounce_visit" : 1}}, "aggs" : { "total_bounce_visits" : {"cardinality" : {"field" : "visit_id" ,"precision_threshold": 40000}} } } } } } }'
因为要根据省份分组,比之前的查询慢一点,但也是秒级返回:
{ "took" : 4349, "timed_out" : false, "_shards" : { "total" : 10, "successful" : 10, "failed" : 0 }, "hits" : { "total" : 5888, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "area_count" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 2456, "buckets" : [ { "key" : "北京", "doc_count" : 573, "uv" : { "value" : 568 }, "visits" : { "value" : 573 }, "return_uv" : { "doc_count" : 9, "total_return_uv" : { "value" : 8 } }, "bounce_visits" : { "doc_count" : 499, "total_bounce_visits" : { "value" : 499 } }, "pv" : { "value" : 986.0 }, "total_stay_times" : { "value" : 24849.0 } }, { "key" : "山东", "doc_count" : 368, "uv" : { "value" : 366 }, "visits" : { "value" : 368 }, "return_uv" : { "doc_count" : 9, "total_return_uv" : { "value" : 9 } }, "bounce_visits" : { "doc_count" : 288, "total_bounce_visits" : { "value" : 288 } }, "pv" : { "value" : 956.0 }, "total_stay_times" : { "value" : 30266.0 } }, ……
这里需要说明一下,在ElasticSearch中,对于去重计数(COUNT DISTINCT)是基于计数估计(Cardinality),因此如果去重记录数比较大(超过40000),便可能会有误差,误差范围是0~2%。
例子2:用户标签的搜索统计
有一张数据表,存储了每个用户ID对应的标签,同样加载到ElasticSearch中,数据格式如下:
curl -XGET 'http://localhost:9200/lxw1234/user_tags/_search?&pretty' { "took" : 220, "timed_out" : false, "_shards" : { "total" : 10, "successful" : 10, "failed" : 0 }, "hits" : { "total" : 820165, "max_score" : 1.0, "hits" : [ { "_index" : "lxw1234", "_type" : "user_tags", "_id" : "222222222222222", "_score" : 1.0, "_source":{"sex" : "女性","age" : "27到30岁","income" : "5000到10000","edu" : "本科", "appcategory" : "娱乐类|1.0","interest" : "","onlinetime" : "9:00~12:00|1.0","os" : "IOS|1.0", "hobby" : "游戏|28.57,房产|8.57,服饰鞋帽箱包|28.57,互联网/电子产品|5.71,家居|8.57,餐饮美食|5.71,体育运动|14.29","region" : "河南省"} } ......
每个用户都有性别、年龄、收入、教育程度、兴趣、地域等标签,其中使用_id来存储用户ID,也是主键。
查询1:SELECT count(1) FROM user_tags WHERE sex = ‘女性’ AND appcategory LIKE ‘%游戏类%';
curl -XGET 'http://localhost:9200/lxw1234/user_tags/_count?pretty' -d ' { "filter" : { "and" : [ {"term" : {"sex" : "女性"}}, {"match_phrase" : {"appcategory" : "游戏类"}} ] } }'
返回结果:
{ "count" : 106977, "_shards" : { "total" : 10, "successful" : 10, "failed" : 0 } }
查询2:先筛选,再分组统计:
SELECT edu,COUNT(1) AS cnt FROM user_tags WHERE sex = '女性' AND appcategory LIKE '%游戏类%' GROUP BY edu ORDER BY cnt DESC limit 10;
查询语句:
curl -XGET 'http://localhost:9200/lxw1234/user_tags/_search?search_type=count&pretty' -d ' { "filter" : { "and" : [ {"term" : {"sex" : "女性"}}, {"match_phrase" : {"appcategory" : "游戏类"}} ] }, "aggs" : { "edu_count" : { "terms" : { "field" : "edu", "size" : 10 } } } }'
返回结果:
{ "took" : 479, "timed_out" : false, "_shards" : { "total" : 10, "successful" : 10, "failed" : 0 }, "hits" : { "total" : 106977, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "edu_count" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "本科", "doc_count" : 802670 }, { "key" : "硕士研究生", "doc_count" : 16032 }, { "key" : "专科", "doc_count" : 1433 }, { "key" : "博士研究生", "doc_count" : 25 }, { "key" : "初中及以下", "doc_count" : 4 }, { "key" : "中专/高中", "doc_count" : 1 } ] } } }
从目前的调研结果来看,ElasticSearch没有让人失望,部署简单,数据加载方便,聚合功能完备,查询速度快,目前完全可以满足我们的实时搜索、统计和OLAP需求,甚至可以作为NOSQL来使用,接下来再做更深入的测试。
另外,还有一个开源的SQL for ElasticSearch的框架Crate(crate.io),是在ElasticSearch之上封装了SQL接口,使得查询统计更加方便,不过SQL支持的功能有限,使用的ElasticSearch版本较低,后面试用一下再看。
您可以关注 lxw的大数据田地 ,或者 加入邮件列表 ,随时接收博客更新的通知邮件。
如果觉得本博客对您有帮助,请 赞助作者 。