微信搜索bigdata029 | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 订阅本站 | 赞助作者:赞助作者

Flume的监控(Monitor)

Flume lxw1234@qq.com 99℃ 0评论

使用Flume实时收集日志的过程中,尽管有事务机制保证数据不丢失,但仍然需要时刻关注Source、Channel、Sink之间的消息传输是否正常,比如,SouceàChannel传输了多少消息,ChannelàSink又传输了多少,两处的消息量是否偏差过大等等。

Flume为我们提供了Monitor的机制:http://flume.apache.org/FlumeUserGuide.html#monitoring 通过Reporting的方式,把过程中的Counter都打印出来。一共有4种Reporting方式,JMX Reporting、Ganglia Reporting、JSON Reporting、Custom Reporting, 这里以最简单的JSON Reporting为例。

在启动Flume Agent时候,增加两个参数:

flume-ng agent -n agent_lxw1234 –conf . -f agent_lxw1234_file_2_kafka.properties -Dflume.monitoring.type=http -Dflume.monitoring.port=34545

flume.monitoring.type=http 指定了Reporting的方式为http,flume.monitoring.port 指定了http服务的端口号。

 

启动后,会在Flume Agent所在的机器上启动http服务,http://<hostname>:34545/metrics 打开该地址后,返回一段JSON:

{
    "SINK.sink_lxw1234":{
        "ConnectionCreatedCount":"0",
        "BatchCompleteCount":"0",
        "BatchEmptyCount":"72",
        "EventDrainAttemptCount":"0",
        "StartTime":"1518400034824",
        "BatchUnderflowCount":"43",
        "ConnectionFailedCount":"0",
        "ConnectionClosedCount":"0",
        "Type":"SINK",
        "RollbackCount":"0",
        "EventDrainSuccessCount":"244",
        "KafkaEventSendTimer":"531",
        "StopTime":"0"
    },
    "CHANNEL.file_channel_lxw1234":{
        "Unhealthy":"0",
        "ChannelSize":"0",
        "EventTakeAttemptCount":"359",
        "StartTime":"1518400034141",
        "Open":"true",
        "CheckpointWriteErrorCount":"0",
        "ChannelCapacity":"10000",
        "ChannelFillPercentage":"0.0",
        "EventTakeErrorCount":"0",
        "Type":"CHANNEL",
        "EventTakeSuccessCount":"244",
        "Closed":"0",
        "CheckpointBackupWriteErrorCount":"0",
        "EventPutAttemptCount":"244",
        "EventPutSuccessCount":"244",
        "EventPutErrorCount":"0",
        "StopTime":"0"
    },
    "SOURCE.source_lxw1234":{
        "EventReceivedCount":"244",
        "AppendBatchAcceptedCount":"45",
        "Type":"SOURCE",
        "AppendReceivedCount":"0",
        "EventAcceptedCount":"244",
        "StartTime":"1518400034767",
        "AppendAcceptedCount":"0",
        "OpenConnectionCount":"0",
        "AppendBatchReceivedCount":"45",
        "StopTime":"0"
    }
}

我的例子中,Source为TAILDIR,Channel为FileChannel,Sink为Kafka Sink。三个JSON对象分别打印出三个组件的Counter信息。

比如:SOURCE中”EventReceivedCount”:”244″ 表示SOURCE从文件中读取到244条消息;

CHANNEL中”EventPutSuccessCount”:”244″ 表示成功存放244条消息;

SINK中”EventDrainSuccessCount”:”244″ 表示成功向Kafka发送了244条消息。

 

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » Flume的监控(Monitor)

喜欢 (1)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址