微信搜索bigdata029 | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 订阅本站 | 赞助作者:赞助作者

写给大数据开发初学者的话

大数据平台 lxw1234@qq.com 6656℃ 5评论

导读:

第一章:初识Hadoop
第二章:更高效的WordCount
第三章:把别处的数据搞到Hadoop上
第四章:把Hadoop上的数据搞到别处去
第五章:快一点吧,我的SQL
第六章:一夫多妻制
第七章:越来越多的分析任务
第八章:我的数据要实时
第九章:我的数据要对外
第十章:牛逼高大上的机器学习

经常有初学者在博客和QQ问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高。。。。。。。如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统、硬件、网络、服务器感兴趣?是软件专业,对软件开发、编程、写代码感兴趣?还是数学、统计学专业,对数据和数字特别感兴趣。。
其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控、大数据开发/设计/架构、数据分析/挖掘。请不要问我哪个容易,哪个前景好,哪个钱多。
先扯一下大数据的4V特征:

  1. 数据量大,TB->PB
  2. 数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等;
  3. 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来;
  4. 处理时效性高,海量数据的处理需求不再局限在离线计算当中。

 

现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapReduce、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie
……

 

眼花了吧,上面的有30多种吧,别说精通了,全部都会使用的,估计也没几个。
就我个人而言,主要经验是在第二个方向(开发/设计/架构),且听听我的建议吧。

第一章:初识Hadoop

1.1 学会百度与Google

不论遇到什么问题,先试试搜索并自己解决。
Google首选,翻不过去的,就用百度吧。

1.2 参考资料首选官方文档

特别是对于入门来说,官方文档永远是首选文档。
相信搞这块的大多是文化人,英文凑合就行,实在看不下去的,请参考第一步。

1.3 先让Hadoop跑起来

Hadoop可以算是大数据存储和计算的开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚以下是什么:

  1. Hadoop 1.0、Hadoop 2.0
  2. MapReduce、HDFS
  3. NameNode、DataNode
  4. JobTracker、TaskTracker
  5. Yarn、ResourceManager、NodeManager

自己搭建Hadoop,请使用第一步和第二步,能让它跑起来就行。
建议先使用安装包命令行安装,不要使用管理工具安装。
另外:Hadoop1.0知道它就行了,现在都用Hadoop 2.0.

1.4 试试使用Hadoop

HDFS目录操作命令;
上传、下载文件命令;
提交运行MapReduce示例程序;
打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。
知道Hadoop的系统日志在哪里。

1.5 你该了解它们的原理了

MapReduce:如何分而治之;
HDFS:数据到底在哪里,什么是副本;
Yarn到底是什么,它能干什么;
NameNode到底在干些什么;
ResourceManager到底在干些什么;

1.6 自己写一个MapReduce程序

请仿照WordCount例子,自己写一个(照抄也行)WordCount程序,
打包并提交到Hadoop运行。
你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。


11 

如果觉得本博客对您有帮助,请 赞助作者

如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。


 

第二章:更高效的WordCount

2.1 学点SQL吧

你知道数据库吗?你会写SQL吗?
如果不会,请学点SQL吧。

2.2 SQL版WordCount

在1.6中,你写(或者抄)的WordCount一共有几行代码?
给你看看我的:
SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,我这一句就搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

2.3 SQL On Hadoop之Hive

什么是Hive?官方给的解释是:
The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

为什么说Hive是数据仓库工具,而不是数据库工具呢?有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

2.4 安装配置Hive

请参考1.1 和 1.2 完成Hive的安装配置。可以正常进入Hive命令行。

2.5 试试使用Hive

请参考1.1 和 1.2 ,在Hive中创建wordcount表,并运行2.2中的SQL语句。
在Hadoop WEB界面中找到刚才运行的SQL任务。
看SQL查询结果是否和1.4中MapReduce中的结果一致。

2.6 Hive是怎么工作的

明明写的是SQL,为什么Hadoop WEB界面中看到的是MapReduce任务?

2.7 学会Hive的基本命令

创建、删除表;
加载数据到表;
下载Hive表的数据;
请参考1.2,学习更多关于Hive的语法和命令。


11

如果觉得本博客对您有帮助,请 赞助作者

如果你认真完成了以上几步,恭喜你,你的半条腿已经进来了。


 

以下章节正在整理中,请持续关注 lxw的大数据田地


写给大数据开发初学者的话2

第三章:把别处的数据搞到Hadoop上

第四章:把Hadoop上的数据搞到别处去

写给大数据开发初学者的话3

第五章:快一点吧,我的SQL

第六章:一夫多妻制

写给大数据开发初学者的话4

第七章:越来越多的分析任务

第八章:我的数据要实时

写给大数据开发初学者的话5

第九章:我的数据要对外

第十章:牛逼高大上的机器学习

 

全文完。

 

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » 写给大数据开发初学者的话

喜欢 (41)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(5)个小伙伴在吐槽
  1. 很好,很有用,期待后续章节!
    zhunt2016-12-21 10:06 回复
  2. 您好,请问个人学习选择安装Apache Hadoop还是CDH?
    szh2017-01-13 19:45 回复
  3. 开源框架的分类中,把Flink分在了“查询分析”这个类中是错误的,Flink属于“流式、实时计算”分类
    麦迪2017-02-14 15:42 回复
  4. Hi,很高兴能遇到您的博客。按上边的说法,已经迈进来半条腿。很希望以后的学习能得到指点。
    zouhx2017-02-20 14:30 回复
    • 加油。
      lxw1234@qq.com2017-02-20 14:57 回复