微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 赞助作者:赞助作者

Spark机器学习API之特征处理(二)

Spark lxw1234@qq.com 16039℃ 1评论

关键字:spark、机器学习、特征处理、特征选择

Spark机器学习库中包含了两种实现方式,一种是spark.mllib,这种是基础的API,基于RDDs之上构建,另一种是spark.ml,这种是higher-level API,基于DataFrames之上构建,spark.ml使用起来比较方便和灵活。

Spark机器学习中关于特征处理的API主要包含三个方面:特征提取、特征转换与特征选择。本文通过例子介绍和学习Spark.ml中提供的关于特征处理API中的特征选择(Feature Selectors)部分。

特征选择(Feature Selectors)

1.  VectorSlicer

VectorSlicer用于从原来的特征向量中切割一部分,形成新的特征向量,比如,原来的特征向量长度为10,我们希望切割其中的5~10作为新的特征向量,使用VectorSlicer可以快速实现。

package com.lxw1234.spark.features.selectors

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NumericAttribute}
import org.apache.spark.ml.feature.VectorSlicer
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType

/**
 * By  http://lxw1234.com
 */
object TestVectorSlicer extends App {
    val conf = new SparkConf().setMaster("local").setAppName("lxw1234.com")
    val sc = new SparkContext(conf)
    
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._
    
    
    //构造特征数组
    val data = Array(Row(Vectors.dense(-2.0, 2.3, 0.0)))
    
    //为特征数组设置属性名(字段名),分别为f1 f2 f3
    val defaultAttr = NumericAttribute.defaultAttr
    val attrs = Array("f1", "f2", "f3").map(defaultAttr.withName)
    val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
    
    //构造DataFrame
    val dataRDD = sc.parallelize(data)
    val dataset = sqlContext.createDataFrame(dataRDD, StructType(Array(attrGroup.toStructField())))
    
    print("原始特征:")
    dataset.take(1).foreach(println)
    
    
    //构造切割器
    var slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
    
    //根据索引号,截取原始特征向量的第1列和第3列
    slicer.setIndices(Array(0,2))
    print("output1: ") 
    slicer.transform(dataset).select("userFeatures", "features").first()
    
    //根据字段名,截取原始特征向量的f2和f3
    slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
    slicer.setNames(Array("f2","f3"))
    print("output2: ") 
    slicer.transform(dataset).select("userFeatures", "features").first()
    
    //索引号和字段名也可以组合使用,截取原始特征向量的第1列和f2
    slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")
    slicer.setIndices(Array(0)).setNames(Array("f2"))
    print("output3: ") 
    slicer.transform(dataset).select("userFeatures", "features").first()
    
    
}

程序运行输出为:

原始特征:
[[-2.0,2.3,0.0]]

output1:
org.apache.spark.sql.Row = [[-2.0,2.3,0.0],[-2.0,0.0]]

output2:
org.apache.spark.sql.Row = [[-2.0,2.3,0.0],[2.3,0.0]]

output3:
org.apache.spark.sql.Row = [[-2.0,2.3,0.0],[-2.0,2.3]]

2.  RFormula

RFormula用于将数据中的字段通过R语言的Model Formulae转换成特征值,输出结果为一个特征向量和Double类型的label。关于R语言Model Formulae的介绍可参考:https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html

package com.lxw1234.spark.features.selectors

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

import org.apache.spark.ml.feature.RFormula

/**
 * By  http://lxw1234.com
 */
object TestRFormula extends App {
  
    val conf = new SparkConf().setMaster("local").setAppName("lxw1234.com")
    val sc = new SparkContext(conf)
    
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._
    
    //构造数据集
    val dataset = sqlContext.createDataFrame(Seq(
      (7, "US", 18, 1.0),
      (8, "CA", 12, 0.0),
      (9, "NZ", 15, 0.0)
    )).toDF("id", "country", "hour", "clicked")
    dataset.select("id", "country", "hour", "clicked").show()
    
    //当需要通过country和hour来预测clicked时候,
    //构造RFormula,指定Formula表达式为clicked ~ country + hour
    val formula = new RFormula().setFormula("clicked ~ country + hour").setFeaturesCol("features").setLabelCol("label")
    //生成特征向量及label
    val output = formula.fit(dataset).transform(dataset)
    output.select("id", "country", "hour", "clicked", "features", "label").show()

}

程序输出:

spark

 

spark

 

3.  ChiSqSelector

ChiSqSelector用于使用卡方检验来选择特征(降维)。

package com.lxw1234.spark.features.selectors

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.ml.feature.ChiSqSelector
import org.apache.spark.mllib.linalg.Vectors

/**
 * By  http://lxw1234.com
 */
object TestChiSqSelector extends App {
  
    val conf = new SparkConf().setMaster("local").setAppName("lxw1234.com")
    val sc = new SparkContext(conf)
    
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._
    
    //构造数据集
    val data = Seq(
      (7, Vectors.dense(0.0, 0.0, 18.0, 1.0), 1.0),
      (8, Vectors.dense(0.0, 1.0, 12.0, 0.0), 0.0),
      (9, Vectors.dense(1.0, 0.0, 15.0, 0.1), 0.0)
    )
    val df = sc.parallelize(data).toDF("id", "features", "clicked")
    df.select("id", "features","clicked").show()
    
    //使用卡方检验,将原始特征向量(特征数为4)降维(特征数为3)
    val selector = new ChiSqSelector().setNumTopFeatures(3).setFeaturesCol("features").setLabelCol("clicked").setOutputCol("selectedFeatures")
    
    val result = selector.fit(df).transform(df)
    result.show()

}

程序输出为:

spark


 

您可以关注 lxw的大数据田地 ,或者 加入邮件列表 ,随时接收博客更新的通知邮件。

 

 

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » Spark机器学习API之特征处理(二)

喜欢 (11)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(1)个小伙伴在吐槽
  1. 还有后续特征转化的博客么
    战士2016-07-14 15:12 回复