微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 赞助作者:赞助作者

Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

Hive lxw1234@qq.com 71781℃ 1评论

本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途。

Hive版本为 apache-hive-0.13.1

注意: 序列函数不支持WINDOW子句。(什么是WINDOW子句,点此查看前面的文章

数据准备:

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7

CREATE EXTERNAL TABLE lxw1234 (
cookieid string,
createtime string,   --day 
pv INT
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/tmp/lxw11/';

DESC lxw1234;
cookieid                STRING 
createtime              STRING 
pv INT 

hive> select * from lxw1234;
OK
cookie1 2015-04-10      1
cookie1 2015-04-11      5
cookie1 2015-04-12      7
cookie1 2015-04-13      3
cookie1 2015-04-14      2
cookie1 2015-04-15      4
cookie1 2015-04-16      4
cookie2 2015-04-10      2
cookie2 2015-04-11      3
cookie2 2015-04-12      5
cookie2 2015-04-13      6
cookie2 2015-04-14      3
cookie2 2015-04-15      9
cookie2 2015-04-16      7

NTILE

NTILE(n),用于将分组数据按照顺序切分成n片,返回当前切片值
NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
如果切片不均匀,默认增加第一个切片的分布

SELECT 
cookieid,
createtime,
pv,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1,	--分组内将数据分成2片
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,  --分组内将数据分成3片
NTILE(4) OVER(ORDER BY createtime) AS rn3        --将所有数据分成4片
FROM lxw1234 
ORDER BY cookieid,createtime;

cookieid day           pv       rn1     rn2     rn3
-------------------------------------------------
cookie1 2015-04-10      1       1       1       1
cookie1 2015-04-11      5       1       1       1
cookie1 2015-04-12      7       1       1       2
cookie1 2015-04-13      3       1       2       2
cookie1 2015-04-14      2       2       2       3
cookie1 2015-04-15      4       2       3       3
cookie1 2015-04-16      4       2       3       4
cookie2 2015-04-10      2       1       1       1
cookie2 2015-04-11      3       1       1       1
cookie2 2015-04-12      5       1       1       2
cookie2 2015-04-13      6       1       2       2
cookie2 2015-04-14      3       2       2       3
cookie2 2015-04-15      9       2       3       4
cookie2 2015-04-16      7       2       3       4

–比如,统计一个cookie,pv数最多的前1/3的天

SELECT 
cookieid,
createtime,
pv,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn 
FROM lxw1234;

--rn = 1 的记录,就是我们想要的结果

cookieid day           pv       rn
----------------------------------
cookie1 2015-04-12      7       1
cookie1 2015-04-11      5       1
cookie1 2015-04-15      4       1
cookie1 2015-04-16      4       2
cookie1 2015-04-13      3       2
cookie1 2015-04-14      2       3
cookie1 2015-04-10      1       3
cookie2 2015-04-15      9       1
cookie2 2015-04-16      7       1
cookie2 2015-04-13      6       1
cookie2 2015-04-12      5       2
cookie2 2015-04-14      3       2
cookie2 2015-04-11      3       3
cookie2 2015-04-10      2       3

ROW_NUMBER

ROW_NUMBER() –从1开始,按照顺序,生成分组内记录的序列
–比如,按照pv降序排列,生成分组内每天的pv名次
ROW_NUMBER() 的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。

 

SELECT 
cookieid,
createtime,
pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn 
FROM lxw1234;

cookieid day           pv       rn
------------------------------------------- 
cookie1 2015-04-12      7       1
cookie1 2015-04-11      5       2
cookie1 2015-04-15      4       3
cookie1 2015-04-16      4       4
cookie1 2015-04-13      3       5
cookie1 2015-04-14      2       6
cookie1 2015-04-10      1       7
cookie2 2015-04-15      9       1
cookie2 2015-04-16      7       2
cookie2 2015-04-13      6       3
cookie2 2015-04-12      5       4
cookie2 2015-04-14      3       5
cookie2 2015-04-11      3       6
cookie2 2015-04-10      2       7

RANK 和 DENSE_RANK

—RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
—DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位

 

SELECT 
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM lxw1234 
WHERE cookieid = 'cookie1';

cookieid day           pv       rn1     rn2     rn3 
-------------------------------------------------- 
cookie1 2015-04-12      7       1       1       1
cookie1 2015-04-11      5       2       2       2
cookie1 2015-04-15      4       3       3       3
cookie1 2015-04-16      4       3       3       4
cookie1 2015-04-13      3       5       4       5
cookie1 2015-04-14      2       6       5       6
cookie1 2015-04-10      1       7       6       7

rn1: 15号和16号并列第3, 13号排第5
rn2: 15号和16号并列第3, 13号排第4
rn3: 如果相等,则按记录值排序,生成唯一的次序,如果所有记录值都相等,或许会随机排吧。

点此查看所有Hive窗口分析函数的文章

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

喜欢 (108)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(1)个小伙伴在吐槽
  1. 可以把row_number 和 rank对比一下其实~ 话说,我曾经问过,遇到order值相同的两行记录时,row_number 怎么选择先后顺序 当时HIVE的官方邮件list里的Furcy Pin同学是这么回答的, Hello, Either one can receive the bigger row_num, in an underteministic fashion (which is NOT equivalent to random). Simply put, it will be whichever is treated last by Hive, which you have no way to know. If your two rows differ on other columns, you might want to add them to your ORDER BY clause to ensure consistency. If you do want to have them randomly shuffled, you can simply use "ORDER BY cost, rand()" Finally, there are other variants to row_number that behave slightly differently, check out this link: https://blog.jooq.org/2014/08/12/the-difference-between-row_number-rank-and-dense_rank/
    孙安知2018-09-29 14:55 回复