微信搜索bigdata029 | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 订阅本站 | 赞助作者:赞助作者

Spark算子:RDD基本转换操作(7)–zipWithIndex、zipWithUniqueId

Spark lxw1234@qq.com 8293℃ 0评论

关键字:Spark算子、Spark RDD基本转换、zipWithIndex、zipWithUniqueId

zipWithIndex

def zipWithIndex(): RDD[(T, Long)]

该函数将RDD中的元素和这个元素在RDD中的ID(索引号)组合成键/值对。

scala> var rdd2 = sc.makeRDD(Seq("A","B","R","D","F"),2)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[34] at makeRDD at :21

scala> rdd2.zipWithIndex().collect
res27: Array[(String, Long)] = Array((A,0), (B,1), (R,2), (D,3), (F,4))

zipWithUniqueId

def zipWithUniqueId(): RDD[(T, Long)]

该函数将RDD中元素和一个唯一ID组合成键/值对,该唯一ID生成算法如下:

每个分区中第一个元素的唯一ID值为:该分区索引号,

每个分区中第N个元素的唯一ID值为:(前一个元素的唯一ID值) + (该RDD总的分区数)

看下面的例子:

scala> var rdd1 = sc.makeRDD(Seq("A","B","C","D","E","F"),2)
rdd1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[44] at makeRDD at :21
//rdd1有两个分区,

scala> rdd1.zipWithUniqueId().collect
res32: Array[(String, Long)] = Array((A,0), (B,2), (C,4), (D,1), (E,3), (F,5))
//总分区数为2
//第一个分区第一个元素ID为0,第二个分区第一个元素ID为1
//第一个分区第二个元素ID为0+2=2,第一个分区第三个元素ID为2+2=4
//第二个分区第二个元素ID为1+2=3,第二个分区第三个元素ID为3+2=5

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » Spark算子:RDD基本转换操作(7)–zipWithIndex、zipWithUniqueId

喜欢 (11)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址