微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 赞助作者:赞助作者

Spark算子:统计RDD分区中的元素及数量

Spark lxw1234@qq.com 24186℃ 1评论

关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量

Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。

可以利用RDD的mapPartitionsWithIndex方法来统计每个分区中的元素及数量。

关于mapPartitionsWithIndex的介绍可以参考 mapPartitionsWithIndex的介绍

http://lxw1234.com/archives/2015/07/348.htm

具体看例子:

//创建一个RDD,默认分区15个,因为我的spark-shell指定了一共使用15个CPU资源
//–total-executor-cores 15

scala> var rdd1 = sc.makeRDD(1 to 50)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at makeRDD at :21

scala> rdd1.partitions.size
res15: Int = 15

//统计rdd1每个分区中元素数量

rdd1.mapPartitionsWithIndex{
    (partIdx,iter) => {
      var part_map = scala.collection.mutable.Map[String,Int]()
        while(iter.hasNext){
          var part_name = "part_" + partIdx;
          if(part_map.contains(part_name)) {
            var ele_cnt = part_map(part_name)
            part_map(part_name) = ele_cnt + 1
          } else {
            part_map(part_name) = 1
          }
          iter.next()
        }
        part_map.iterator
       
    }
  }.collect

res16: Array[(String, Int)] = Array((part_0,3), (part_1,3), (part_2,4), (part_3,3), (part_4,3), (part_5,4), (part_6,3), 
(part_7,3), (part_8,4), (part_9,3), (part_10,3), (part_11,4), (part_12,3), (part_13,3), (part_14,4))
//从part_0到part_14,每个分区中的元素数量

//统计rdd1每个分区中有哪些元素

rdd1.mapPartitionsWithIndex{
  (partIdx,iter) => {
    var part_map = scala.collection.mutable.Map[String,List[Int]]()
      while(iter.hasNext){
        var part_name = "part_" + partIdx;
        var elem = iter.next()
        if(part_map.contains(part_name)) {
          var elems = part_map(part_name)
          elems ::= elem
          part_map(part_name) = elems
        } else {
          part_map(part_name) = List[Int]{elem}
        }
      }
      part_map.iterator
     
  }
}.collect

res17: Array[(String, List[Int])] = Array((part_0,List(3, 2, 1)), (part_1,List(6, 5, 4)), (part_2,List(10, 9, 8, 7)), (part_3,List(13, 12, 11)), 
(part_4,List(16, 15, 14)), (part_5,List(20, 19, 18, 17)), (part_6,List(23, 22, 21)), (part_7,List(26, 25, 24)), (part_8,List(30, 29, 28, 27)), 
(part_9,List(33, 32, 31)), (part_10,List(36, 35, 34)), (part_11,List(40, 39, 38, 37)), (part_12,List(43, 42, 41)), (part_13,List(46, 45, 44)), 
(part_14,List(50, 49, 48, 47)))
//从part_0到part14,每个分区中包含的元素


//从HDFS文件创建的RDD,包含65个分区,因为该文件由65个Block

scala> var rdd2 = sc.textFile("/logs/2015-07-05/lxw1234.com.log")
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[21] at textFile at :21

scala> rdd2.partitions.size
res18: Int = 65

//rdd2每个分区的元素数量

scala> rdd2.mapPartitionsWithIndex{
     |         (partIdx,iter) => {
     |           var part_map = scala.collection.mutable.Map[String,Int]()
     |             while(iter.hasNext){
     |               var part_name = "part_" + partIdx;
     |               if(part_map.contains(part_name)) {
     |                 var ele_cnt = part_map(part_name)
     |                 part_map(part_name) = ele_cnt + 1
     |               } else {
     |                 part_map(part_name) = 1
     |               }
     |               iter.next()
     |             }
     |             part_map.iterator
     |            
     |         }
     |       }.collect


res19: Array[(String, Int)] = Array((part_0,202496), (part_1,225503), (part_2,214375), (part_3,215909), 
(part_4,208941), (part_5,205379), (part_6,207894), (part_7,209496), (part_8,213806), (part_9,216962), 
(part_10,216091), (part_11,215820), (part_12,217043), (part_13,216556), (part_14,218702), (part_15,218625), 
(part_16,218519), (part_17,221056), (part_18,221250), (part_19,222092), (part_20,222339), (part_21,222779), 
(part_22,223578), (part_23,222869), (part_24,221543), (part_25,219671), (part_26,222871), (part_27,223200), 
(part_28,223282), (part_29,228212), (part_30,223978), (part_31,223024), (part_32,222889), (part_33,222106), 
(part_34,221563), (part_35,219208), (part_36,216928), (part_37,216733), (part_38,217214), (part_39,219978), 
(part_40,218155), (part_41,219880), (part_42,215833...

更多关于Spark算子的介绍,可参考 Spark算子

http://lxw1234.com/archives/tag/spark%E7%AE%97%E5%AD%90

 

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » Spark算子:统计RDD分区中的元素及数量

喜欢 (11)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(1)个小伙伴在吐槽
  1. 用这个办法统计好像更简洁(本人初学者,没有班门弄斧的意思,也是受您的启发写的,几行代码写了半天。见笑) val r0 = sc.makeRDD(1 to 50, 15) val r1 = r0.mapPartitions{ x => Iterator(x.length) } r1.collect
    没伞的孩子2016-07-30 17:36 回复