关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithIndex方法来统计每个分区中的元素及数量。
关于mapPartitionsWithIndex的介绍可以参考 mapPartitionsWithIndex的介绍:
http://lxw1234.com/archives/2015/07/348.htm
具体看例子:
//创建一个RDD,默认分区15个,因为我的spark-shell指定了一共使用15个CPU资源
//–total-executor-cores 15
scala> var rdd1 = sc.makeRDD(1 to 50) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at makeRDD at :21 scala> rdd1.partitions.size res15: Int = 15
//统计rdd1每个分区中元素数量
rdd1.mapPartitionsWithIndex{ (partIdx,iter) => { var part_map = scala.collection.mutable.Map[String,Int]() while(iter.hasNext){ var part_name = "part_" + partIdx; if(part_map.contains(part_name)) { var ele_cnt = part_map(part_name) part_map(part_name) = ele_cnt + 1 } else { part_map(part_name) = 1 } iter.next() } part_map.iterator } }.collect res16: Array[(String, Int)] = Array((part_0,3), (part_1,3), (part_2,4), (part_3,3), (part_4,3), (part_5,4), (part_6,3), (part_7,3), (part_8,4), (part_9,3), (part_10,3), (part_11,4), (part_12,3), (part_13,3), (part_14,4)) //从part_0到part_14,每个分区中的元素数量
//统计rdd1每个分区中有哪些元素
rdd1.mapPartitionsWithIndex{ (partIdx,iter) => { var part_map = scala.collection.mutable.Map[String,List[Int]]() while(iter.hasNext){ var part_name = "part_" + partIdx; var elem = iter.next() if(part_map.contains(part_name)) { var elems = part_map(part_name) elems ::= elem part_map(part_name) = elems } else { part_map(part_name) = List[Int]{elem} } } part_map.iterator } }.collect res17: Array[(String, List[Int])] = Array((part_0,List(3, 2, 1)), (part_1,List(6, 5, 4)), (part_2,List(10, 9, 8, 7)), (part_3,List(13, 12, 11)), (part_4,List(16, 15, 14)), (part_5,List(20, 19, 18, 17)), (part_6,List(23, 22, 21)), (part_7,List(26, 25, 24)), (part_8,List(30, 29, 28, 27)), (part_9,List(33, 32, 31)), (part_10,List(36, 35, 34)), (part_11,List(40, 39, 38, 37)), (part_12,List(43, 42, 41)), (part_13,List(46, 45, 44)), (part_14,List(50, 49, 48, 47))) //从part_0到part14,每个分区中包含的元素
//从HDFS文件创建的RDD,包含65个分区,因为该文件由65个Block
scala> var rdd2 = sc.textFile("/logs/2015-07-05/lxw1234.com.log") rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[21] at textFile at :21 scala> rdd2.partitions.size res18: Int = 65
//rdd2每个分区的元素数量
scala> rdd2.mapPartitionsWithIndex{ | (partIdx,iter) => { | var part_map = scala.collection.mutable.Map[String,Int]() | while(iter.hasNext){ | var part_name = "part_" + partIdx; | if(part_map.contains(part_name)) { | var ele_cnt = part_map(part_name) | part_map(part_name) = ele_cnt + 1 | } else { | part_map(part_name) = 1 | } | iter.next() | } | part_map.iterator | | } | }.collect res19: Array[(String, Int)] = Array((part_0,202496), (part_1,225503), (part_2,214375), (part_3,215909), (part_4,208941), (part_5,205379), (part_6,207894), (part_7,209496), (part_8,213806), (part_9,216962), (part_10,216091), (part_11,215820), (part_12,217043), (part_13,216556), (part_14,218702), (part_15,218625), (part_16,218519), (part_17,221056), (part_18,221250), (part_19,222092), (part_20,222339), (part_21,222779), (part_22,223578), (part_23,222869), (part_24,221543), (part_25,219671), (part_26,222871), (part_27,223200), (part_28,223282), (part_29,228212), (part_30,223978), (part_31,223024), (part_32,222889), (part_33,222106), (part_34,221563), (part_35,219208), (part_36,216928), (part_37,216733), (part_38,217214), (part_39,219978), (part_40,218155), (part_41,219880), (part_42,215833...
更多关于Spark算子的介绍,可参考 Spark算子 :
http://lxw1234.com/archives/tag/spark%E7%AE%97%E5%AD%90
如果觉得本博客对您有帮助,请 赞助作者 。
转载请注明:lxw的大数据田地 » Spark算子:统计RDD分区中的元素及数量