微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理、OLAP分析与可视化平台 | 赞助作者:赞助作者

[一起学Hive]之十七-从Hive表中进行数据抽样-Sampling

Hive lxw1234@qq.com 27432℃ 2评论

关键字:Hive数据取样、Hive Sampling、Hive TABLESAMPLE.

在Hive中提供了数据取样(SAMPLING)的功能,用来从Hive表中根据一定的规则进行数据取样,Hive中的数据取样支持分桶表取样和数据块取样。

16.1 数据块取样(Block Sampling)

  • block_sample: TABLESAMPLE (n PERCENT)

根据输入的inputSize,取样n%。

比如:输入大小为1G,TABLESAMPLE (50 PERCENT)将会取样512M的数据;

看例子:

表lxw1总大小约为64816816,总记录数为:2750714

Hive sampling

使用下面的语句,从表lxw111中取样50%的数据,创建一个新表:

CREATE TABLE lxw1234 AS

SELECT * FROM lxw1 TABLESAMPLE (50 PERCENT);

完成后看看表lxw1234的记录数和大小:

Hive sampling

结果表记录数:1376390,总大小:32432626,基本上是原表的50%。

  • block_sample: TABLESAMPLE (nM)

这种方式指定取样数据的大小,单位为M。

比如,下面的语句:

CREATE TABLE lxw1234_2 AS

SELECT * FROM lxw1 TABLESAMPLE (30M);

将会从表lxw1中取样30M的数据:

Hive sampling

  • block_sample: TABLESAMPLE (n ROWS)

这种方式可以根据行数来取样,但要特别注意:这里指定的行数,是在每个InputSplit中取样的行数,也就是,每个Map中都取样n ROWS。

下面的语句:
SELECT COUNT(1) FROM (SELECT * FROM lxw1 TABLESAMPLE (200 ROWS)) x;

Hive sampling

有5个Map Task(InputSplit),每个取样200行,一共1000行。

16.2 分桶表取样(Sampling Bucketized Table)

关于Hive中的分桶表(Bucket Table),在以后的文章中将会介绍,其实就是根据某一个字段Hash取模,放入指定数据的桶中,比如将表lxw1234按照ID分成100个桶,其算法是hash(id) % 100,这样,hash(id) % 100 = 0的数据被放到第一个桶中,hash(id) % 100 = 1的记录被放到第二个桶中。分桶表在创建时候使用CLUSTER BY语句创建。

 

Hive中分桶表取样的语法是:

table_sample: TABLESAMPLE (BUCKET x OUT OF y [ON colname])

其中x是要抽样的桶编号,桶编号从1开始,colname表示抽样的列,y表示桶的数量。

例子1

SELECT COUNT(1)

FROM lxw1 TABLESAMPLE (BUCKET 1 OUT OF 10 ON rand());

该语句表示将表lxw1随机分成10个桶,抽样第一个桶的数据;

前面介绍过,表lxw1总大小约为64816816,总记录数为:2750714

Hive sampling

出来的结果基本上是原表的十分之一,注意:这个结果每次运行是不一样的,因为是按照随机数进行分桶取样的。

例子2

如果基于一个已经分桶表进行取样,将会更有效率。

执行下面的语句,创建一个分桶表,并插入数据:

CREATE TABLE lxw1_bucketed (pcid STRING)

CLUSTERED BY(pcid) INTO 10 BUCKETS;

 

INSERT overwrite TABLE lxw1_bucketed

SELECT pcid FROM lxw1;

表lxw1_bucketed按照pcid字段分成10个桶,下面的语句表示从10个桶中抽样第一个桶的数据:

SELECT COUNT(1) FROM lxw1_bucketed TABLESAMPLE(BUCKET 1 OUT OF 10 ON pcid);

很好理解。

再看这个:

SELECT COUNT(1) FROM lxw1_bucketed TABLESAMPLE(BUCKET 1 OUT OF 20 ON pcid)

表只有10个桶,如果指定20,看结果:

Hive sampling

结果差不多是源表记录的1/20,Hive在运行时候,会在第一个桶中抽样一半的数据。

还有一点:

如果从源表中直接分桶抽样,也能达到一样的效果,比如:

SELECT COUNT(1) FROM lxw1 TABLESAMPLE(BUCKET 1 OUT OF 20 ON pcid);

区别在于基于已经分桶的表抽样,查询只会扫描相应桶中的数据,而基于未分桶表的抽样,查询时候需要扫描整表数据,先分桶,再抽样。

其它更详细的用法请参考Hive的官方文档说明。

 

更多关于Hadoop、Spark、Hive等的文章,请关注 我的博客

 

Hive相关文章(持续更新)

一起学Hive系列

—-Hive概述,Hive是什么

—-Hive函数大全-完整版

—-Hive中的数据库(Database)和表(Table)

—-Hive的安装配置

—-Hive的视图和分区

—-Hive的动态分区

—-向Hive表中加载数据

—-使用Hive命令行

—-Hive的查询语句SELECT

—-Hive中Join的原理和机制

—-Hive中Join的类型和用法

—-Hive SQL的优化

—-Hive整合HBase,操作HBase表

—-Hive的元数据表结构详解

—-分析Hive表和分区的统计信息(Statistics)

—-Hive的WEB页面接口-HWI

Hive分析函数系列

Hive索引

hive优化之——控制hive任务中的map数和reduce数

 

 

如果觉得本博客对您有帮助,请 赞助作者

转载请注明:lxw的大数据田地 » [一起学Hive]之十七-从Hive表中进行数据抽样-Sampling

喜欢 (5)
分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(2)个小伙伴在吐槽
  1. 详细学习了
    uckyk2016-01-21 15:31 回复
  2. 您好,楼主用的是hive哪个版本的呢?
    小白2016-11-29 15:53 回复